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The performance analysis of electromagnetic machines requires the computationally expensive finite element method because of the 

non-linear property of the electromagnetic field. Therefore, considering uncertainties such as manufacturing tolerances, a large 

amount of computation occurs in the design process. In this paper, the above robust design problem is solved by using a multimodal 

optimization. The multimodal optimization can provide low sensitivity to design variables as well a good fitness value without the 

Pareto front set. However, the multimodal optimization algorithm requires more computation compared to other problems because it 

has to find multiple peaks. To improve the convergence speed of the multimodal optimization, this paper developed an optimization 

algorithm based on surrogate model. The proposed algorithm can find solutions rapidly by estimating and correcting the peaks itself 

based on the surrogate model. In addition, the sensitivity to design parameters can be obtained directly from the first and second 

derivatives of the response surface without a sensitivity analysis. The developed algorithm is applied to several mathematical test 

functions, and its usefulness is verified by comparison with the results of conventional methods. 

 
Index Terms—Electromagnetic machine design, multimodal optimization, robust optimization, surrogate model. 

 

I. INTRODUCTION 

N the electromagnetic machine (EM) design problem, there 

are many design variables to be determined, and their non-

linear interrelations should be considered during the design 

process. To take the non-linear properties of electromagnetic 

field into account, a computationally expensive finite element 

analysis (FEA) is employed for EM design. Thus, an efficient 

optimization design strategy is required to reduce FEA 

evaluations and computation cost. 

In real-world applications, the knowledge of multiple 

solutions is especially useful when the global optima may not 

always be feasible. In particular, physical constraints such as 

fabrication tolerance always exist in engineering problem. 

Consequently, the resultant performances can be different 

from intended ones. A multimodal optimization deals with 

such a problem by finding all or most of the multiple solutions 

that considers both fitness and solution quality. In recent years, 

several algorithms employing a niche concept have been 

studied for multimodal problems [1]-[2]. However, an 

excessive application of the niche concept drastically increases 

the objective function evaluations and the advantage from 

searching multiple minima can be lost. 

In this paper, an optimization algorithm assisted by 

surrogate model has been newly developed for multimodal 

optimization problems. The surrogate model of the proposed 

algorithm reduces the iterations at early stage by providing 

approximate global and local minima locations. Moreover, the 

sensitivity for each design variable at optima can be predicted 

directly from the first and second order derivative to the 

surrogate model. Therefore, additional sensitivity analysis is 

not necessary. The developed multimodal optimization can 

reduce the computational cost significantly when compared to 

conventional algorithms. The validity of the proposed 

algorithm is proven through several mathematical test 

functions in the digest. The effectiveness of the proposed 

algorithm in electromagnetic machine design application will 

be presented in the full paper. 

II. PROPOSED OPTIMIZATION ALGORITHM 

In this paper, we propose a new multimodal optimization 

strategy assisted by a surrogate model. There have been many 

interpolation techniques to generate a surrogate model such as 

the response surface method (RSM) and Kriging method. The 

Kriging method is modeled by a Gaussian process governed 

by a covariance between samplings and produces the best 

prediction of the intermediate values [3]. Hence, this paper 

employs the Kriging method. The proposed multimodal 

algorithm is summarized in Table I. 

 
TABLE I 

THE FLOW CHART OF PROPOSED ALGORITHM 

Proposed multimodal optimization algorithm:  

A. Construction of surrogate model 

1. Definition of design constraints 

Step 1. Define design variable and its constraints. 

 

2. Construction of a surrogate model 

Step 2. Generate initial samples 

Generate initial samples in the design space based on the full factorial 

design (FFD) and calculate their objective function values. 

 

Step 3. Construct a surrogate model: 

Calculate a correlation matrix between the samples [3], and construct a 

surrogate model by applying the Kriging method. 

 

Step 4. Predict objective function values at all feasible points based on 

the surrogate model and determine the global and local optima based 

on approximated first derivative of surrogate model: 

The objective function values can be predicted by the surrogate model at 

all points. From the estimated objective values, a first-order derivative at 

an arbitrary point can be computed. The global and local peaks are found 

where the first-order derivative is switched from a minus to a plus in the 

minimizing problem, and vice versa in the maximizing problem. 
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Step 5. Update peaks and repeat step 3-5 until the number of solutions 

remains unchanged during 3 iterations: 

The global and local solutions are updated at this step. When the present 

number of peaks is identical to that of the previous step during 3 iterations, 

the surrogate model is assumed to be converged. However, there are still 

errors between exact solutions and predicted peaks. Thus, to find exact 

solutions, an additional peak search process is necessary. 

 

B. Searching for exact solutions 

Step 6. Place additional samples around the predicted local peaks: 

For an exact peak search, this paper focuses on target areas where peaks 

are expected to be. In this step, additional samples are scattered around the 

estimated peaks. The subpopulations around exact optima increase the 

response surface resolution, especially near the peaks. The high-resolution 

surrogate model can improve both peak prediction accuracy and sensitivity 

evaluation quality. The singular matrix problem caused by the 

subpopulation will be discussed in full paper. 

 

Step 7. Update peaks and repeat step 6-7 until all of the solutions are 

no longer improved: 

Based on the updated surrogate model, the new global and local peaks are 

obtained as shown in Fig 1 (a)-(c). When the newly developed solutions 

are no longer improved when compared to previous peaks, the process for 

searching exact solutions is terminated. 

 

Step 8. Evaluate a sensitivity: 

Based on the surrogate model, the sensitivity for 2-D problem is given by 
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where f, dxi, and n stand for the expected fitness value, difference of ith 

design variable xi, and number of design variables. When the sensitivity 

magnitude S(X) has a low value, the convexity at the point is low and thus 

results in a flat response surface. The flat response surface indicates a low 

sensitivity to design variables, and is preferred in general design case. 

Based on the sensitivities and fitness values at each peak, a final solution 

is selected by a designer. 

III. NUMERICAL TESTS AND RESULTS 

The performance of the proposed algorithm is verified by 

comparison with the most famous multimodal algorithms; 

niching genetic algorithm (NGA) and auto tuning NGA. In 

NGA and auto-tuning NGA, the population size, crossover, 

and mutation probabilities are set to 20, 90% and 10%, 

respectively. As shown in Table II and III, the proposed 

method can achieve all solutions with much fewer fitness 

evaluations compared to conventional methods. The final 

solution is selected as (-4.56,-4.56) and (7.02, 6.96) for test 

function 1 and 2, respectively considering both fitness value 

and sensitivity to design variables. 

IV. CONCLUSION 

In the conventional robust optimization, a global solution is 

chosen from the Pareto front set consisting of fitness and 

sensitivity axes. The Pareto front set requires lots of fitness 

evaluations enough to get exact solutions. In this paper, by 

applying multimodal optimization which considers the 

sensitivity, a robust optimization is possible without the Pareto 

front set. Furthermore, this paper proposes an effective 

multimodal optimization algorithm that finds all of the 

solutions and their sensitivity with a remarkably small number 

of fitness value evaluations compared to the conventional 

multimodal optimization algorithms. Thus, the proposed 

method is especially useful in the design of electromagnetic 

machines that require a low number of fitness evaluations 

even with a non-linear response surface. 
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Fig. 1. Peak search process for the test function 2: (a) 86 samples, (b) 135 

samples, and (c) 199 samples. 

 

TABLE II 

OPTIMIZATION RESULTS FOR TEST FUNCTION 1 

f(x, y) = 20+x2 +y2-10(cos2πx+ cos2πy),  -5.12 ≤ x, y ≤ 5.12 

 NGA 
Auto tuning 

NGA 

Proposed 

Algorithm 

No. of peaks 100 100 100 

No. of searched peaks 100 100 100 

Fitness value evaluation 19,893 12,795 913 

 

TABLE III 

OPTIMIZATION RESULTS FOR TEST FUNCTION 2 

f(x, y) = (50-(x-5)2+5cos(2π(x-5))+(y-5)2+5cos(2π(y-5))),   2.5 ≤ x, y ≤ 7.5 

 NGA 
Auto tuning 

NGA 

Proposed 

Algorithm 

No. of peaks 25 25 25 

No. of searched peaks 25 25 25 

Fitness value evaluation 7,890 4,961 241 
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